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Siting Samplers to Minimize Expected Time to Detection

Travis Walter, David M. Lorenzetti, and Michael D. Sohn∗

We present a probabilistic approach to designing an indoor sampler network for detecting an
accidental or intentional chemical or biological release, and demonstrate it for a real build-
ing. In an earlier article, Sohn and Lorenzetti developed a proof of concept algorithm that
assumed samplers could return measurements only slowly (on the order of hours). This led
to optimal “detect to treat” architectures that maximize the probability of detecting a release.
This article develops a more general approach and applies it to samplers that can return mea-
surements relatively quickly (in minutes). This leads to optimal “detect to warn” architectures
that minimize the expected time to detection. Using a model of a real, large, commercial
building, we demonstrate the approach by optimizing networks against uncertain release lo-
cations, source terms, and sampler characteristics. Finally, we speculate on rules of thumb for
general sampler placement.
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1. INTRODUCTION

Many private and public agencies are developing
hardware to detect the presence of airborne chemi-
cal or biological agents in or near buildings. Detect-
ing a contaminant would allow acting to minimize ad-
verse health effects, for example, by evacuating the
building, manipulating air supplies, and mobilizing
medical response. However, this range of possible
responses—plus practical constraints imposed by the
hardware, and uncertainty about the operating con-
ditions under which it must function—complicate the
design and operation of a monitoring network that
balances risk appropriately.

The designer must decide, for example, on the
number of samplers to deploy, their operating char-
acteristics (e.g., sampling frequency and detection
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limit), where to place them, and what release scenar-
ios to try to detect. To address these questions, Sohn
and Lorenzetti(1) proposed a probabilistic approach
to network design and demonstrated its application
in a synthetic building. Many other approaches have
been taken(2−4) that advance the state of this re-
search, but none account for the relative likelihoods
of uncertain conditions. This article extends the work
in Ref. 1 by: (1) developing a more complete analy-
sis framework, (2) adding a new metric for evaluating
network performance, and (3) applying the resulting
algorithms to a real building.

The approach taken here, while developed to
protect against airborne plumes of chemical or bio-
logical material (see also Refs. 5 and 6), is relevant to
wider problems of monitoring indoor air quality,(7)

building energy,(8) occupancy,(9) thermal comfort,(10)

lighting,(11) and more.(12,13) Whenever samplers are
too expensive to deploy widely throughout a build-
ing, a probabilistic optimization approach may help
balance the competing design constraints and goals
of the sampler network. Furthermore, whenever the
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network must operate under uncertain or variable
conditions, a probabilistic approach, such as the one
described here, may be needed.

2. PROBABILISTIC ALGORITHM FOR
SAMPLER DEPLOYMENT

Consider designing an air-monitoring network in
order to maximize some measure, φ, of the network
quality. Whatever the metric, uncertainty and vari-
ability in the operating conditions mean that the net-
work quality cannot be defined deterministically.

Stochastic effects arise in the source (for exam-
ple, the release location, rate, and time, and the ma-
terial degradation and deposition rates); in sampler
characteristics (probability of detecting a given con-
centration, or the time needed to process samples); in
environmental conditions (outside temperature and
wind direction); and in the building operation (sta-
tus of the ventilation system, condition of filters, posi-
tion of doors and windows, and leakiness of the duct-
work). Uncertainty also arises from the models used
to assess the contaminant dispersion (for example,
due to simplifications in the model physics, and the
extent to which model parameters have been tuned
to match the actual building operation).

2.1. Expected Performance

In the face of such probabilistic effects, the qual-
ity metric should reflect the statistically expected per-
formance of the network. The probabilistic approach
to sampler siting (PASS)(1) finds the expected net-
work performance by aggregating the outcomes of
many deterministic model runs, each drawing its in-
put parameters from distributions of likely values.

In this approach, the key sources of uncertainty
and variability that might affect the performance
of the sampler network—the source and sampler
characteristics, environmental conditions, building
operation, model structure, and so on—are first iden-
tified and characterized. Assigning probability distri-
butions to these uncertain conditions can be done
using past measurements or engineering judgment.
While specifying these distributions is not trivial, a
key feature of probabilistic algorithms is that they al-
low testing for the effect the distributions have on
sampler placement and network performance. Sam-
pling from these distributions yields a suite of sce-
narios, or test cases, against which to evaluate candi-
date networks. A pollutant fate and transport model
is then used to simulate each scenario. Finally, PASS

finds the expected performance of each candidate
sampler network, taking into account the relative
likelihood of each scenario.

Let φi give the value of some quality metric, as
applied to scenario i . Because each scenario is de-
fined deterministically, φi also is a deterministic mea-
sure of how well a particular sampler network per-
forms given a specific scenario. Combining across all
I scenarios in the suite yields the expected perfor-
mance, as

E[φ] =
∑

i∈I

φi · P[i], (1)

where P[i] gives the relative likelihood of scenario i .

2.2. Performance Metrics

The algorithm reported in Ref. 1 maximized the
expected probability of detecting a release. This goal
implicitly acknowledged the fact that first-generation
samplers required many hours to collect and ana-
lyze samples before returning results. The resulting
networks were optimal detect-to-treat architectures,
which sought mainly to identify the fact that a release
took place.

A new generation of samplers, able to provide
data on the order of minutes, offers the promise
of detect-to-warn architectures. Such systems, by fo-
cusing mainly on fast detection, will enable actions
intended to minimize exposures, for example, by
evacuating the building, or manipulating fresh air
supplies. However, this greater capability further
complicates the network design: while higher sam-
pling rates may let the network detect a release ear-
lier, they can also lead to noisier data, to lower de-
tection probabilities (since shorter sampling windows
present the sampler with less airborne mass to de-
tect), or to more false positives.

Suppose a sampler returns a new result at inter-
vals of length τ . Each such interval constitutes a sam-
pling window. Let P[Si,z,w] give the probability, for
release scenario i , that sampler z will alarm during a
particular window, w. Then a network comprising a
set Z of samplers will alarm during window w if one
or more of those samplers alarms:

P[Ni,w] = 1 −
∏

z∈Z

(1 − P[Si,z,w]) . (2)

Note that Equation (2) uses P[at least one occurs] =
1 − P[none occurs]. If the network concept of op-
eration demands multiple samplers to alarm, for
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example, in order to guard against false positives, a
more complicated expression results.

Looking across all sampling windows, the cumu-
lative probability that a network will alarm for sce-
nario i after sampling across W windows is

P[Ni ] = 1 −
W∏

w=1

(1 − P[Ni,w]) . (3)

Combining Equations (2) and (3),

P[Ni ] = 1 −
W∏

w=1

∏

z∈Z

(1 − P[Si,z,w]) . (4)

Since the order of multiplication is immaterial, one
may precompute the products 1 − P[Si,z,w] across the
windows W of interest, then combine them according
to the sampler selections in Z.

For detect-to-treat architectures, we define the
performance metric in scenario i as the probability
that the network in question will detect the release:

φi = P[Ni ], (5)

with W chosen sufficiently large. Note that the opti-
mal network will maximize the expected value of this
performance metric over all scenarios.

We now turn to the goal of fast detection. As de-
scribed above, many of the distributions that define
the scenarios affect the probability of detecting a re-
lease. Therefore, detection is itself a stochastic phe-
nomenon. Accordingly, we let the network designer
specify a desired level of confidence, β, that the net-
work will alarm. Then

Ti = τ · min{W : P[Ni ] > β} (6)

gives the time at which a particular network can de-
tect scenario i with at least β probability.

If a network does not detect the release in sce-
nario i , Equation (6) leaves Ti undefined. In this case,
the designer must specify some appropriate value,
for example, by estimating the time it would take to
detect the release by some other means (e.g., when
a large number of occupants experience health ef-
fects).

For detect-to-warn architectures, we define the
performance metric in scenario i as the time required
to detect the release:

φi = Ti , (7)

and note that the optimal network will minimize the
expected value of this performance metric over all
scenarios.

In this article, we consider only two performance
metrics, probability of detection and time to detec-

tion. However, the algorithm presented here can use
any performance metric, including occupant expo-
sure(5,6), health consequences, or total cost of oper-
ation.

3. APPLICATION TO A CONVENTION
CENTER

To demonstrate the sampler network design ap-
proach, we apply the algorithm to a realistic model of
a large building. Fig. 1 shows a modified schematic of
a real convention center in which Lawrence Berkeley
National Laboratory (LBNL) performed tracer gas
experiments(14). In addition to the main convention
space floor, the building has two floors of offices. The
building is served by 67 heating, ventilation, and air
conditioning (HVAC) units.

3.1. Model

In each of six experiments, one or more inert
tracer gases were released, and concentrations mea-
sured every 1–30 minutes, in approximately 40 loca-
tions. The data were used to calibrate a multizone
airflow and pollutant transport model of the build-
ing using CONTAM.(15) The model consists of 337
well-mixed zones. Fig. 2 shows typical postcalibra-
tion model-to-data comparisons. For this particular
building, high ventilation rates mean that the well-
mixed assumption is valid, but our algorithm allows
any type of pollutant transport model (e.g., CFD) to
be used.

Because the model does not perfectly repre-
sent the building, it introduces uncertainty into the
network design process. A key feature of the ap-
proach described here is that the network designer
can hedge against this uncertainty by using multiple
pollutant transport models of the building. For ex-
ample, one model could be tuned to match the inte-
grated concentration in each zone (which might be
most appropriate when maximizing the probability
of detection), while another model could be tuned to
match the estimated timing of the peaks (which might
be most appropriate when minimizing the time to de-
tection). Using multiple models would mean adding
scenarios to the analysis, with the relative confidence
in each model reflected in the scenario likelihoods,
P[i]. In this study, we used only the convention cen-
ter CONTAM model described in Ref. 14, since it
is available for others to use in comparative sampler
network design studies.
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Fig. 1. Plan of occupied floors of the convention center, with approximate floor areas.

3.2. Release Scenarios

The most important sources of uncertainty in
designing a sampler network are the variables that
affect the transport and dispersion of the chemical
or biological agent: the source characteristics, en-
vironmental conditions and building operation. As
demonstrated here, the designer can enumerate the
scenarios of interest and assign each a relative like-
lihood of occurrence. Alternately, the designer can
define continuous distributions of parameters such as
the release mass and wind speed, then sample from
those distributions in order to generate probability-
weighted scenarios. For clarity, in this study, we con-
sider only 60 scenarios, each consisting of one of 20
possible release locations (Table I) and one of three
possible release rates (Table II). In this study, we
vary only release locations and release rates, but our
algorithm allows specification of scenarios that vary
any uncertain parameters, such as those mentioned
in Section 2.

3.3. Sampler Performance

The real performance of a sampler may have a
probabilistic component. Given a large amount of

contaminant in the air, there is a higher chance that
the sampler will detect the agent. However, due to
miscalibration, fouling, noise, imperfect mixing, and
so on, the presence of an agent in the room air does
not guarantee detection—even above the sampler’s
nominal detection threshold.

Fig. 3 shows the assumed sampler performance
for this study, based on simplified performance
curves of actual hardware (mass units are withheld
for security reasons). The probability of detection
during any given sampling window depends on both
the agent mass that passed through the sampler dur-
ing that time, and the sensitivity of the detection
equipment. We assumed that ambient air is pumped
through a sampler at 100 L/min. For this building,
with large rooms and high ventilation rates, we as-
sumed that the presence of a sampler will not affect
the airflow between rooms, and will not significantly
change the well-mixed assumption within rooms.

In the analysis that follows, all samplers in a
given network have the same operating curve and
sampling window. However, a network could include
samplers with different detection characteristics—for
example, incorporating fast, sensitive samplers to de-
tect a release quickly, along with slower, but less
error-prone samplers to confirm a release. Similarly,



2036 Walter, Lorenzetti, and Sohn

Fig. 2. Concentration profiles as predicted by the model (lines), and as measured in experiments (points). Results are for two of three
experiments shown in Ref. 14.

a network consisting of samplers with different win-
dow lengths, or with windows staggered in relation
to one another, might yield a more robust network.
The PASS approach can be applied to any of these
options, at the cost of having to evaluate more net-
works in order to find the optimal one.

3.4. Detection Confidence

The sampler network design includes decision
points for signaling an alarm, which is a part of
the network concept of operation (ConOps). As sug-
gested above, this may include the number and type

of samplers that must alarm before taking action.
The decision criterion used in this analysis is for a
network to alarm as soon as at least one sampler
alarms. Alternately, a network could be chosen to
alarm when at least two samplers alarm, or when
at least two samplers alarm within a given time pe-
riod. In cases where false alarms can be exceedingly
expensive (e.g., whole-building evacuation, deploy-
ment of emergency personnel, etc.), a very high con-
fidence criteria might be chosen, but this, in turn, may
result in delayed detection.

It is important to distinguish between the
ConOps (which determine the operation of the
network after deployment) and the calculations of
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Table I. Release Location Probabilities

Location Count Probability (each)

Ground Floor 16 0.0575
Second Floor 2 0.02
Third Floor 2 0.02

Note: Release locations were selected to encompass a variety of
zone types and ventilation rates. Note that releases on the main
floor are assumed more likely than ones on the upper floors.

Table II. Release Rate Probabilities

Rate (g/min) Probability

0.1 0.1
1 0.6
10 0.3

Note: All releases are assumed to last for 10 minutes.
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Fig. 3. Probability of detecting an agent during a single sampling
window, for high (solid), medium (dashed), and low (dotted) sen-
sitivity of the detection equipment.

expected network performance during the design
phase (which will determine sampler locations, but
not network operation). Network designers must de-
fine a performance metric that takes the ConOps into
account. For this example, we set β = 0.5 in Equa-
tion (6). In other words, for each scenario, we take Ti

as the average time at which each network detects a
release with at least 50% confidence.

3.5. Candidate Locations

We allow PASS to choose from among 35 pos-
sible sampler locations in the convention center, in-
cluding several types of occupied zones and ven-
tilation return ducts. In principle, any zone of the
multizone model defines a possible sampler location.
However, in practice, the number of possible sampler
networks increases sharply with the number of sam-
pler locations the algorithm is allowed to consider.
When PASS optimizes n samplers among r possible
locations, it must evaluate

(r + n − 1)!
(r − 1)! n!

(8)

networks. For example, placing n = 5 samplers
among the 35 locations we allow defines 575,757 net-
works. Doubling the number of possible locations
would increase the number of networks by a factor
of almost 28. In the examples that follow, comput-
ing an optimal two-sampler network with five-minute
sampling windows takes less than one minute on a
2.4 GHz processor with 2 GB of RAM, running Mac
OS X 10.5. Finding an optimal four-sampler network
takes approximately 18 minutes.

3.6. Calculations

Simulating the contaminant transport for any
given scenario gives the mass that a hypothetical sam-
pler would accumulate in each candidate location,
during each sampling window. The mass is then used
to determine the detection probabilities, P[Si,z,w], us-
ing the curves in Fig. 3. Aggregating across sam-
plers and sampling windows, Equation (3) gives the
probability a network will detect the scenario, while
Equation (6) gives the time to detect at the specified
confidence level (for convenience in calculating these
performance metrics, the first sampling window, w =
1, is taken as the window in effect at the time the
release begins). Finally, Equation (1) gives the net-
work’s expected performance across all 60 scenarios.
All possible networks are compared, in order to find
the one with the best expected performance.

4. RESULTS

Figs. 4–7 summarize the performance of the op-
timal networks that PASS identifies. For example,
Fig. 4 shows the maximum expected probability of
detection, across all the networks tested, as a func-
tion of the number of samplers in the network.
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(b) 15-minute sampling window

Fig. 4. Expected probability of detection of best network, for varying network size, sampler sensitivity, and sampling window.

Fig. 5. Expected probability of detection of best network, for vary-
ing network size and sampling window. Results are for low sensi-
tivity samplers. Each curve is labeled with the number of samplers
in the network.

Similarly, Fig. 5 shows the probability of detection
for the best network as a function of the sampling
window duration, and Figs. 6 and 7 show similar plots
for the networks with the fastest time to detection.

4.1. Optimal Locations

Comparing the optimal networks, we saw no
consistently-favored sampler locations. This contra-
dicts Ref. 1, in which maximizing the probability of

detection, across networks of different sizes, tended
to place more sensitive samplers in bathrooms (to
take advantage of exhaust airflows), and less sen-
sitive samplers in ventilation system return ducts
(which effectively sample air from throughout the
building).

We attribute the lack of favored sampler loca-
tions in the convention center to the large airflows
between zones. With no partitions between many
zones, and relatively high recirculation rates, the con-
vention center mixes quickly compared to the office-
dominated building from the original study. The high
mixing rate also explains why, in the convention cen-
ter, many of the best networks have nearly the same
expected performance: if no particular zone has a
unique concentration profile, then no particular zone
is critical to the sampler network’s performance.

Because many networks have similar quality, the
optimal sampler locations are often nonintuitive. For
example, the best two-sampler network will not nec-
essarily place a sampler in the same zone as the best
one-sampler network. Thus, a “greedy” optimization
approach, in which samplers are added one by one to
the previous best network, is not ideal for the sam-
pler placement problem.

In a real design exercise, we would treat the rel-
atively small variation in the performance among
many networks as an invitation to expand the
scope of the investigation. Improving the scenarios
considered—for example, by including new building
operating conditions, better characterizing the dis-
tributions of uncertain parameters, or adding new
release locations and amounts—might allow PASS
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(a) two-minute sampling window
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(b) 15-minute sampling window

Fig. 6. Expected time to detection of fastest network, for varying network size, sampler sensitivity, and sampling window.

Fig. 7. Expected time to detection of fastest network, for varying
network size and sampling window. Results are for low-sensitivity
samplers. Each curve is labeled with the number of samplers in the
network. The dotted line represents the maximum possible per-
formance for a given sampling window duration (i.e., the network
detects at the end of the first sampling window).

to better discriminate between the expected perfor-
mance of the networks. Admitting more possible
sampler locations might improve the final network
quality. Tightening the confidence limit for estimat-
ing Ti might reveal some networks to be more robust
than others. Finally, if none of these changes affected
the results appreciably, then we would accept that
many networks are near-optimal and pick the final
sampler locations based on other operational criteria
(such as ease of service, or aesthetics).

4.2. Network Size

In Figs. 4–7, the expected network performance
improves with network size. The marginal improve-
ment in network performance when adding a sampler
is largest for small networks, and, in this application,
is virtually negligible for networks with five or more
samplers. Intuitively, allowing PASS to place more
samplers improves its ability to cover all parts of the
building; however, mixing by the ventilation system
means that effective coverage does not demand plac-
ing a sampler in every zone.

4.3. Sampler Sensitivity

Figs. 4 and 6 show that improving the sam-
pler sensitivity improves the expected network per-
formance (giving higher detection probability, or
faster detection). This effect is more pronounced for
smaller networks. However, among the smaller net-
works, adding a single sampler generally improves
the network quality more than does increasing the
sampler sensitivity by a factor of 10. This suggests us-
ing PASS to explore an interesting practical trade-
off, between cost and sensitivity, in real sampler
design.

4.4. Sampling Frequency

Figs. 5 and 7 show that network performance
is highest for very short sampling windows and im-
proves as the sampling windows get very long. They
also show lower overall network performance for
intermediate sampling window sizes. For example,
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Fig. 8. Probability of detection for one-sampler networks, plotted against air changes per hour in that zone, for varying sampler sensitivity
and sampling window. Each circle represents one of the candidate sampler locations, and the line represents a linear fit to the data.

Fig. 9. Expected time of detection for one-sampler networks, plotted against air changes per hour in that zone, for varying sampler sensi-
tivity and sampling window. Each circle represents one of the candidate sampler locations, and the line represents a linear fit to the data.

in Fig. 5, the detection probability for the optimal
network that samples with 15-minute windows is
lower than that of networks having one-minute or 30-
minute windows. In Fig. 7, note that this effect is rela-
tive to maximum performance—overall, shorter sam-
pling windows yield lower absolute time to detection.
This effect is more pronounced for smaller networks.

One explanation for this result may be compet-
ing attributes of an optimal network. With very short
sampling windows, many samples, each of which in-
dividually may have low probability of detection, can
result in a high cumulative probability of detection
(see Equation (3)). Conversely, with a long-duration

window, such as two hours, a large amount of mass
is collected and that single sample results in a high
probability of detection (see Fig. 3). With interme-
diate sampling windows, the network benefits from
neither many samples nor long samples, and the per-
formance of the networks decreases.

Other possible reasons for the dip include the
duration of the release, the residence time of the
contaminant in the building, or when samples are
taken relative to the beginning of the release. To
explore these possibilities, we conducted numerical
experiments in which we varied these parameters.
While none of these factors individually explained
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the shape of the curves in Fig. 5, each had some con-
tribution. Network designers would benefit from a
rule of thumb on selecting the ideal sampling win-
dow, but further research is needed on this topic.

4.5. Air Exchange Rates

We also explored methods for choosing opti-
mal networks in cases where a contaminant trans-
port model of the building is not available, and would
be prohibitively expensive or time-consuming to pro-
duce. Building operators may wish to estimate net-
work performance using easily identifiable building
characteristics, either in lieu of building a model, or
as a feasibility test to determine whether it is worth-
while to construct a building model.

Airborne transport is the most important mech-
anism for mixing chemical and biological agents
through a building, and is essential to the operation
of the types of samplers considered here. Further-
more, all else being equal, increasing the amount of
airflow through a zone increases the chances it will
receive air from a zone that contains the agent re-
lease. Therefore, a natural choice for a performance
predictor is the air exchange rate in each zone, in-
formation which may be easily estimated by building
operators (for example, using as-built drawings of the
ventilation system).

In Figs. 8 and 9, the performance of a one-
sampler network improves somewhat with higher air
exchange rates in the zone of interest. However,
there is a great deal of variability, particularly for
zones with low air exchange rates. Clearly, the air ex-
change rate for a zone is not a good proxy, at least
in this building, for overall mixing of air from other
parts of the building through that particular zone.

While we acknowledge that the relationship be-
tween network performance and air exchange rates
is tenuous, and the accuracy of performance predic-
tions depends on the accuracy of air exchange rate
estimates, we believe that there is merit in further in-
vestigating methods to predict network performance
using easily evaluated building characteristics, and
plan to explore this further in future work.

5. CONCLUSION

We presented a probabilistic approach to design
an indoor sampler network for the purpose of detect-
ing a chemical or biological agent. The design of such
a network is complicated by uncertainty and variabil-
ity in all aspects of the problem, including building

operation modes, agent release conditions, meteorol-
ogy, contaminant transport modeling, and sampler
hardware behavior. These probabilistic effects moti-
vated a statistical approach that optimizes the net-
work’s expected performance, according to the like-
lihood of a range of possible scenarios.

Past work on this approach maximized the prob-
ability of detecting a release. However, advances in
sampler hardware have made results available more
rapidly. Therefore, in this work, we also minimize the
time to detect a release, at a prescribed level of confi-
dence. We demonstrated our approach by designing
sampler networks for a large commercial building,
using a pollutant dispersion model that was tuned to
experimental data from a real building.

Our approach allows comparisons between com-
peting network design parameters and network per-
formance. Therefore, network designers can mini-
mize the hardware, deployment, and maintenance
cost of fielding a network with a given level of perfor-
mance (for example, by trading one high-sensitivity
sampler for several lower cost samplers of lesser
sensitivity). Similarly, the PASS methodology could
also be used by sampler hardware manufacturers, to
guide their designs (for example, in deciding whether
to build faster or more sensitive samplers).
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