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Abstract 14 

Almost half of the world’s population still cooks on biomass cookstoves of poor efficiency and 15 

primitive design, such as three stone fires (TSF).  Emissions from biomass cookstoves contribute 16 

to adverse health effects and climate change.  A number of improved cookstoves with higher 17 

energy efficiency and lower emissions have been designed and promoted across the world.  18 

During the design development, and for the selection of a stove for dissemination, the stove 19 

performance and emissions are commonly evaluated, communicated and compared using the 20 

arithmetic average of replicate tests made using a standardized laboratory-based test, commonly 21 

the water boiling test (WBT).  However, the statistics section of the test protocol contains some 22 

debatable concepts and in certain cases, easily misinterpreted recommendations.  Also, there is 23 
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no agreement in the literature on how many replicate tests should be performed to ensure 24 

“confidence” in the reported average performance (with three being the most common number of 25 

replicates).  This matter has not received sufficient attention in the rapidly growing literature on 26 

stoves, and yet is crucial for estimating and communicating the performance of a stove, and for 27 

comparing the performance between stoves.  We illustrate an application using data from a 28 

number of replicate tests of performance and emission of the Berkeley-Darfur Stove (BDS) and 29 

the TSF under well-controlled laboratory conditions.  Here we focus on two as illustrative: time-30 

to-boil and emissions of PM2.5 (particulate matter less than or equal to 2.5 micrometers in 31 

diameter).  We demonstrate that interpretation of the results comparing these stoves could be 32 

misleading if only a small number of replicates had been conducted.  We then describe a 33 

practical approach, useful to both stove testers and designers, to assess the number of replicates 34 

needed to obtain useful data from previously untested stoves with unknown variability.   35 

 36 
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 39 

1. Introduction 40 

About half of the world’s population uses biomass as fuel for cooking (IEA, 2004).  The smoke 41 

from biomass cooking fires was recently found to be the largest environmental threat to health in 42 

the world, and is associated with 4 million deaths each year (Lim et al., 2012).  This exposure 43 

has also been linked to adverse respiratory, cardiovascular, neonatal, and cancer outcomes 44 

(Smith et al., 2004; Weinhold, 2011).  A 2011 World Bank report notes significant contributions 45 
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of biomass cooking to global climate change (World Bank, 2011).  The contribution to climate 46 

change from black carbon (BC) emission from biomass cooking is a topic of growing interest, 47 

especially in terms of climate forcing and melting of glaciers (Hadley et al., 2010; Ramanathan 48 

and Carmichael, 2008).  Current biomass stoves lead to a large burden of disease, and contribute 49 

to adverse impacts on local and the global environment.  Hence there is substantial interest in 50 

developing and disseminating fuel-efficient biomass stoves with reduced emissions (e.g. DOE 51 

2011).  Launched in September 2010, the Global Alliance for Clean Cookstoves (GACC) “100 52 

by 20” goal calls for 100 million homes to adopt clean and efficient stoves and fuels by 2020. 53 

  The “three-stone fire” (TSF) is a commonly prevailing cooking method for a large 54 

fraction of the population at the base of the economic pyramid.  In quantifying the performance 55 

of an improved stove, the TSF is commonly used as the baseline.  This least expensive class of 56 

stove is simply an arrangement of three large stones supporting a pot over an open and unvented 57 

biomass fire.  A TSF is one of the two stoves we analyzed in this study.  We also tested the 58 

performance and emissions of the Berkeley-Darfur Stove (BDS) as an exemplar of an improved 59 

fuel-efficient biomass cookstove.  The BDS was developed at Lawrence Berkeley National 60 

Laboratory (LBNL) for internally displaced persons in Darfur, Sudan 61 

(http://cookstoves.lbl.gov/darfur.php).  It is an all-metal precision-designed natural-convection 62 

stove, with design features co-developed by iterative feedback from Darfuri women cooks.  The 63 

BDS by design accommodates Darfuri traditional round-bottom cooking pots and cooking 64 

techniques (Figure 1).  65 

 A literature survey of recent laboratory cookstove testing in peer-reviewed journal 66 

articles shows widely different numbers of replicate tests (Bailis et al., 2007; Jetter and Kariher, 67 

2009; Jetter et al., 2012; MacCarty et al., 2008, 2010; Roden et al., 2009; Smith et al., 2007).  68 
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The number of replicates reported in these seven studies range from 1 to 23.  However, six out of 69 

seven studies have reported results with only 3 or fewer replicates.  One then can rightly ask: 70 

how many replicate tests do I need to test the performance and emissions of the stove? 71 

Answering this question is application specific, and requires greater specificity.  For example, 72 

the question might be better phrased.  For a water boiling test (WBT), how many replicates are 73 

needed to estimate the average “time to boil” to within 2 minutes and with 95% confidence? Or 74 

how many replicates are needed to confirm, with 95% confidence, that Stove “A” emits less 75 

PM2.5 than Stove “B”? These questions exemplify perhaps the most frequently asked questions in 76 

planning stove experiments and interpreting their results.  77 

 There is no single or simple answer to the number of replicates needed to answer the 78 

above questions.  The answer depends on the experimental design, how many parameters need to 79 

be estimated, and the resulting variability in the stove replicates.  In this study, we investigate 80 

how to answer the above questions using data from the BDS and TSF water boiling experiments.  81 

We show how the number of replicates is linked to uncertainty and variability in the experiments 82 

and stove performance.  We also show how many replicates are likely needed as various 83 

practical performance comparisons, such as “Does Stove A perform better than Stove B?” and 84 

“What is the uncertainty in the expected performance of Stove A or Stove B?”  Finally, we 85 

describe a practical approach to design an experiment to test the performance of a previously 86 

untested stove. 87 

 88 

2. Problem statement and causes of variability 89 
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The Appendix 6 of the WBT (version 3.0, http://www.pciaonline.org/node/1048) 90 

provides a detailed approach for comparing the performance of stoves.  It describes a suite of test 91 

statistics and important considerations for interpreting test results.  While comprehensive, the 92 

description contains some debatable concepts and in certain cases, easily-misinterpreted 93 

recommendations. For example, it affirms “At least three tests should be performed on each 94 

stove” and provides a cogent explanation for it.  It also discusses the importance of paying 95 

attention to the statistical significance of a series of comparison tests between the performances 96 

of two stoves.  While both statements are correct, it is not surprising that stove testers 97 

misinterpret these comments as (i) “only three tests are needed” or (ii) a hypothesis test with 98 

strong p-value (assuming a Gaussian distribution) provides unarguable confirmation of stove 99 

performance or comparison results.  In fact, neither interpretation is correct or claimed in the 100 

text.  We reason further elucidation of Appendix 6 is necessary, and a more transparent 101 

methodology would greatly benefit stove testers. We believe a transparent methodology would 102 

be best accomplished by developing an approach that maps the trade space between sample size, 103 

variability, and confidence. We also believe it is important to show that alternative methods for 104 

comparing the performances of stoves are available and should be considered. This work thus 105 

builds and improves upon Appendix 6 by providing new methods of interpreting test results for 106 

stove testers. 107 

 The literature generally shows that even under carefully controlled conditions, stove test 108 

results show high test-to-test variability (coefficient of variation > 1.0, e.g. Jetter et al., 2012).  109 

There are many possible causes of this variability even within a precisely defined test such as the 110 

latest WBT (version 4.2.2), and we list a few here.  Stove efficiency and emissions are generally 111 

a function of thermal power, and owing to the discrete nature of fuel-feeding events, a stove’s 112 
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thermal power invariably varies, also contributing to temporal variability within a test, which can 113 

translate into test-to-test variability.  Despite due care, the ratio of bark to sapwood to hardwood 114 

for various pieces of fuelwood can be different, and thus will have different burn characteristics.  115 

Furthermore, different pieces of fuelwood may have different surface to volume ratios, 116 

contributing to different rates of burning.  Lastly, even reasonably experienced and careful stove 117 

testers demonstrate some variability in the way they tend the fire in the stove from test to test, 118 

and within a test (Granderson et al., 2009).  All these (and other uncontrolled factors) together 119 

give rise to what we lump together as variability in the test-to-test replicate results for a stove 120 

under controlled laboratory conditions.  121 

 122 

3. Approach 123 

The question of “How many replicate tests do I need?” is not novel.  It is a well-researched 124 

question in classical statistical theory, but has not received much attention from the stove 125 

research community.  We briefly summarize here the statistical background relevant to answer 126 

the question. 127 

3.1 Probability density function and cumulative distribution function 128 

Technically, for a continuous random variable, the probability density function (PDF) describes 129 

the probability that a value will be within a certain range of the sample.  However, as this range 130 

is evaluated by integrating, it can be chosen to be quite small, so for most practical purposes, the 131 

PDF may be considered the probability of obtaining a particular value (Ellison, 2009).  132 

Graphically, if the PDF is a curve, the cumulative distribution function (CDF) is the area under 133 

that curve.  It is used to compute probability; the larger the included range, the greater the 134 
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probability.  Because of this, the CDF over the entire range is equal to 1.  For a normal (or 135 

Gaussian) distribution, the CDF curve is a normal ogee curve, which is a smooth even S-shaped 136 

curve (Ellison, 2009).  Skewing in the distribution away from the Gaussian will lead to one half 137 

of the S to be elongated or distorted. 138 

3.2 Standard error and confidence interval for an average 139 

The standard deviation refers to the variation of observations within individual experimental 140 

units, whereas the standard error refers to the random variation of an estimate (made with n 141 

replicates) from the mean value that will be obtained as the number of replicates increases.  The 142 

standard deviation   is calculated by: 143 

  √  

   
∑(    ̅)

       (1) 144 

where           are the individual measurements used to calculate the average.  A 145 

convenient way to calculate the sample standard deviation is using the “STDEV” function in 146 

Excel.  The standard error is the measure of the experimental error of an estimated statistic (e.g. 147 

the mean).  For the sample average  ̅ from n replicate tests, the standard error   ̅ is    √ , where 148 

  is the standard deviation of the n replicates.  The standard error on the mean can be reduced by 149 

increasing the number of replicates.  Replication will not reduce the standard deviation but it will 150 

reduce the standard error.  In practical term, this means that our goal is to achieve a standard 151 

error small enough to make convincing and useful conclusions.  Additionally, in our experience, 152 

computing the variance can be problematic from very few replicates.  It is mathematically 153 

correct that a variance can be computed from just three replicates.  However, we have commonly 154 

found that three replicates resulted in a somewhat small variance, only to be often greater or 155 
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much greater once we include the fourth and fifth sample.  As a rule-of-thumb we are dubious of 156 

variances computed from fewer than five replicates. 157 

 The confidence interval indicates the reliability of an estimate made from a given number 158 

of replicates.  The (   )     confidence interval for the average  ̅ has the form  ̅   , 159 

where   is called the half-length, since a segment of the length of 2E centered on  ̅, provides the 160 

full confidence interval.  E is related to α, σ, and n (the number of replicates) by the following 161 

equation.  162 

    
 ⁄
  √                                                                     (2) 163 

Where   
 ⁄
 is a dimensionless number that can be looked up in standard handbooks for various 164 

standard distributions (e.g. Berthouex and Brown, 2002).  Transposing equation (2), the number 165 

of replicates that will produce this interval half-length is 166 

  (
  

 ⁄
 

 
)                                                                         (3) 167 

This assumes random sampling.  It also assumes that n is large enough that the normal 168 

distribution can be used to define the confidence interval.  To apply equation (3), we must 169 

specify     (      )      .  Values of (   ) that might be used are shown in the top row 170 

with corresponding values of Z in the bottom row of Table 1. 171 

 When the measurements are assumed to be normally distributed but the number of 172 

replicates is small (by small, textbooks suggest less than 30) and the population standard 173 

deviation is unknown, a Student’s t-distribution is used (Berthouex and Brown, 2002).  To 174 

calculate the number of replicates n, the coefficient    is used in place of   
 ⁄
shown in equation 175 
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(3).  A selection of t-values is listed in Table 2.  The t value decreases as n increases, but notice 176 

that there is little change once n exceeds 5.  An exact solution of the number of replicates for 177 

small n (less than 30) requires an iterative solution, but a good approximate is obtained by using 178 

a rounded value of t = 2.1 or 2.2, which covers a good working range of n = 10 to n = 25 (p = 179 

0.05).  When analyzing data we carry three decimal places in the value of t, but that kind of 180 

accuracy is misplaced.  The greatest uncertainty lies in the value of the specified   (refer to 181 

Equation (2)), so we can conveniently round off t to one decimal place.  Additional information 182 

about confidence interval estimation and experiment sizing can be found in Berthouex and 183 

Brown (2002), Spiegel et al. (2008), and Taylor (1997).   184 

3.3 Bootstrapping 185 

All the preceding discussion was predicated on the assumption of a Gaussian distribution of 186 

underlying population.  What if the distribution is not Gaussian?  Bootstrapping is a powerful 187 

statistical approach that allows estimation of the variability of many properties of the data 188 

without making any assumptions about the shape of the original distribution F.  Efron (1979) 189 

provides an accessible explanation, with examples, of the bootstrap method.  The key principle 190 

of Bootstrapping is to simulate repeated observations from the unknown distribution F, using 191 

repeated sampling of the obtained single set of data.  Bootstrapping can be implemented by 192 

constructing a number of resamples of the observed dataset.  Each resample is obtained by 193 

random sampling with replacement from the original dataset (Varian, 2005).  Increasing the 194 

number of resamples can reduce the impact of random sampling errors, but it cannot increase the 195 

amount of information existing in the original dataset (Efron and Tibshirani, 1993).  196 

3.4 Kolmogorov-Smirnov test 197 
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The Kolmogorov-Smirnov (K-S) test quantifies whether two cumulative distribution functions 198 

(CDFs) are from the same population.  It does so by exploring the maximum distance between 199 

the two CDFs.  Corder et al. (2009) provide a good summary of the K-S test.  The null 200 

hypothesis of a K-S test poses that the two samples are from the same population, and the 201 

research hypothesis poses either that they generally differ, leading to a two-tailed probability 202 

estimate, or that they differ in a specific direction, leading to a one-tailed estimate (Wall, 2003).  203 

The K-S test can be used to compare a sample distribution and a reference distribution or to 204 

compare two sample distributions.  We will apply this test to help us explore how many 205 

replicates are needed to confirm whether the performance of two stoves is indistinguishable. 206 

 The K-S test is a nonparametric statistical test and is only limited by the condition that it 207 

must be applied to continuous distributions.  Unlike the t-test and other parametric tests, which 208 

require assuming Gaussian distribution, continuity is the primary requirement for application of 209 

K-S test making it a very useful tool with unknown distributions.  Also for small and medium 210 

samples, it is more effective to use the K-S test over other nonparametric “goodness-of-fit” tests, 211 

such as the chi-square test or the Wilcoxon test.  The different research hypotheses of the K-S 212 

test also provide directional flexibility which the chi-square test cannot provide (Wall, 2003).  213 

 214 

4. Methods 215 

4.1 Laboratory testing 216 

Laboratory tests of BDS and TSF were performed at the LBNL cookstove testing facility.  217 

Concentrations of PM2.5 (particulate matter less than or equal to 2.5 micrometers in diameter), 218 

carbon monoxide/carbon dioxide (CO/CO2), BC, and several other co-pollutants emitted from 219 
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the BDS and TSF were simultaneously measured.  The DustTrak measures the amount of light 220 

scattered by particles and relates that to their mass.  It is calibrated for a National Institute of 221 

Standards and Technology (NIST) certified PM standard composed of soil from Arizona.  Since 222 

the amount of light scattered by particles is specific to their morphology and chemical 223 

composition, in this study a calibration specific to wood smoke was developed, per the 224 

manufacturer’s recommendation, by comparing PM2.5 concentrations measured with the 225 

DustTrak after adjusting for secondary dilution to those measured gravimetrically.  However, the 226 

DustTrak data are not as reliable and consistent as gravimetric results.  227 

The CO/CO2 concentrations were measured in a single instrument by nondispersive 228 

infrared absorption spectroscopy (NDIR analyzer, CAI 600 series).  A cookstove smoke-specific 229 

calibration was developed for the BC aethalometer measurements.  The results were compared 230 

with particle light-absorption coefficients measured with a photoacoustic absorption 231 

spectrometer (PAS) and elemental carbon concentrations measured using a thermal-optical 232 

analysis method.  The moisture content of each piece of fuel wood was measured using a 233 

moisture meter (Delmhorst, J-2000).  Soft (pine and fir) and hard (oak) woods were used in an 234 

equal number of tests with both stove types.  Soft wood pieces were saw-cut to approximately 15 235 

cm long with a square cross-section of approximately 4 cm
2
 and hard wood pieces were hatchet-236 

cut to a similar size but irregular shape.  The variability in the laboratory test results could 237 

probably be further reduced by using consistent quality wood with more consistent dimensions.   238 

 The BDS and TSF were compared using a modification of the WBT V3.0 protocol.  The 239 

WBT is intended to provide a method to compare the performance and emissions of different 240 

stoves in completing a defined standardized task (Bailis et al., 2007).  In our modified protocol, a 241 

fire is ignited and maintained by periodic feeding of fuelwood to bring 2.5 L of water in a 2.3 kg 242 
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metal Darfur pot (without pot lids) to boil and subsequently maintain it on simmer for 15 243 

minutes, whereupon the fire is extinguished and the mass of remaining fuelwood is measured.  244 

The WBT suggests a default test volume of water of 5 L.  We chose to test with 2.5 L of water, 245 

because it reflects the actual volume of food stove users prepare at a time.  Our previous testing 246 

results show no significant difference of time to boil between cold start and hot start for both the 247 

BDS and TSF.  Therefore, only one high-power phase (cold start) was included in each test.  248 

Note that the International Organization for Standardization (ISO) International Workshop 249 

Agreement (IWA) metrics average high-power (cold start and hot start) values 250 

(http://www.pciaonline.org/files/ISO-IWA-Cookstoves.pdf).  When three WBT replicate tests 251 

are performed, n is equal to 6.   252 

One of the main metrics in our modified WBT test is the time to boil.  In an important 253 

report by the United States Agency for International Developing (USAID, 2008), authors state, 254 

“Fuel-efficient stoves can deliver numerous benefits to end-user households, including fuel and 255 

time savings.” This underlines what we found in our work in Darfur, time savings are indeed 256 

important to the users.  Moreover, we learned from our field partners that the most attractive 257 

feature of the BDS is that the stove could take their drinking water to boiling in less than 5 258 

minutes. The refugee women in Darfur IDP camps have named the BDS in Arabic “Kanun 259 

Khamsa Dagaig” (i.e., “the 5-min stove”), indicating this as the single most important feature of 260 

the BDS from their perspective.  Therefore, we believe “time to boil” is an important testing 261 

matrix from the user perspective and consequently, it is important for us to examine for both 262 

BDS and TSF.  263 

Stove testers control the fuel feeding rate that determines the time to boil.  Two trained 264 

stove testers were employed for all the tests in this study.  The average fuel burning rates for 265 
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BDS and TSF are 12.2 ± 0.9 g/min and 13.8 ± 1.3 g/min (mean ± 1SD), respectively.  These 266 

values indicate that the fire tending skill of the two testers is very consistent.  Please note in other 267 

areas of the world where fuel is more abundant and inexpensive compared to Darfur, users often 268 

sacrifice fuel consumption for time savings.  As shown in Figure 1, the BDS has a small fire box 269 

opening to prevent using more fuel wood than necessary.  The TSF has no such restriction, so it 270 

can achieve a higher fuel burning rate than the BDS, therefore, the TSF could have a shorter time 271 

to boil if fuel consumption is not an issue.  The detailed testing methodology and results are 272 

given by Kirchstetter et al. (2010).   273 

4.2 Data analysis 274 

Stove performance is strongly influenced by the skill of the person tending the stove.  Dozens of 275 

tests were practiced by trained stove testers on both TSF and BDS, and these data were discarded 276 

before performing the tests to produce the data reported in this paper.  This ensured that the 277 

variability observed in the test results was not being primarily influenced by increasing skill of 278 

the tester in tending the stove.  There were 20 and 21 tests completed for TSF and BDS for data 279 

analysis, respectively.  All instrumentation discussed above operated properly during these 41 280 

tests.  The statistical analysis was performed using Statistical Analysis System (SAS Institute 281 

Inc., version 9) and R (http://www.r-project.org/).  282 

 283 

5. Results and discussion 284 

5.1 Data overview 285 

http://www.r-project.org/
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The stove performance and emission results of 21 BDS tests and 20 TSF tests are 286 

comprehensively presented in Kirchstetter et al. (2010).  The moisture content and dry mass of 287 

the soft and hard woods were similar to each other and were the same for TSF and BDS tests.  288 

The completion of tests with softwood (10 tests) required about 90% of the time duration and 289 

90% of the wood mass compared to those with hard wood (10 tests).     290 

 The data of time to boil and PM2.5 emission factor (g/g of fuel consumed) for TSF and 291 

BDS are selected for the statistical analysis in this study.  We understand that PM2.5 emissions 292 

per energy delivered to the cooking pot (g/MJ delivered) is an important metric of cookstove 293 

performance, because it is based on the fundamental desired output - cooking energy- that 294 

enables valid comparisons between all stoves and fuels (Smith et al., 2000).  Also cooking 295 

energy tends to have less variation than time to boil, so it might require a smaller number of 296 

replicates.  However, the data for the mass of water evaporated and the mass of fuel consumed 297 

during cold start were not collected when these tested were conducted.  Thus, a shortcoming of 298 

this study is that it is not possible to calculate the emission factors based on energy delivered to 299 

the pot. 300 

The histogram plots of these data are shown in Figure 2 and Figure 3.  The CDF plots for 301 

the same data are shown in Figure 4 and Figure 5.  On average, cooking tests with the BDS were 302 

completed in 74% of the time for TSF (30.3 minutes vs. 41.0 minutes).  There was less variation 303 

in time to boil with the BDS, as indicated by a narrower spread in the CDF curves for BDS 304 

compared to TSF (Figure 4).  The average PM2.5 emission factor for the BDS tests was 80% of 305 

that for the TSF (3.1 g/kg-wood burned vs. 3.9 g/kg-wood burned).  PM2.5 shows large test-to-306 

test variability.  The distributions of BDS and TSF PM2.5 data overlap substantially, but the 307 
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question to answer is whether data from BDS and TST tests show performance data that are 308 

different and discernable.   309 

5.2 Number of replicate tests to estimate the mean 310 

We now discuss the number of replicate tests needed to estimate the experiment mean within a 311 

user-defined level of confidence.  For example, suppose the analyst desires to compute the 312 

expected boil time of the BDS within a range of plus or minus 2 minutes.  Suppose also that the 313 

analyst desires the certainty of that estimate to be 95%.  In other words, the analyst is saying, “I 314 

would like to know the number of replicate tests needed to compute the average time to boil of 315 

the BDS within a range of 4 minutes, and I want to know that range with a confidence of 95%.”  316 

Figure 6 shows the number replicates needed for three probability levels (0.1, 0.05, and 0.01), 317 

which correspond to confidences of 90%, 95%, and 99%, respectively.  We compute the number 318 

of replicates using equation (3).  The x-axis represents the number of replicates ranging from 1 to 319 

25.  The y-axis represents the width of the confidence interval about the mean, which is twice the 320 

E value in equation (2).  As can be seen in the figure, the smaller the confidence interval about 321 

the mean desired, the larger the number of replicates required.   322 

 As the 0.05 probability in Figure 6 shows, if the width of the confidence interval for the 323 

mean time to boil is 4 minutes at the probability of 0.05, 7 replicates are required.  Note that σ 324 

for the underlying distribution in equation (2) is calculated based on the original 21 replicate 325 

tests.  If only two replicates are conducted, the width of the confidence interval about the mean is 326 

38 minutes at the probability of 0.05 (191 minutes for the probability of 0.01, 19 minutes for the 327 

probability of 0.10).  When the number of replicates increases to 5, the width shrinks to 5.3 328 

minutes at the probability of 0.05 (8.8 minutes for the probability of 0.01, 4.1 minutes for the 329 
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probability of 0.10).  The width of the confidence interval about the mean is relatively stable 330 

when the number of replicates is greater than 15.  A similar trend is observed for the BDS PM2.5 331 

emission factor data.  The width of the confidence interval about the mean BDS PM2.5 emission 332 

factor is enormous for n < 5, and becomes steady when n > 10.    333 

5.3 Number of replicate tests to compare two stoves   334 

We now discuss how many replicate tests are needed to confirm whether the performance of two 335 

stoves is indistinguishable, within a level of confidence.  In essence, we test whether the 336 

underlying statistical distribution of the two stoves for the mean boil time or emission factor are 337 

the same.  Figure 7 shows the probability as a function of the number of replicates calculated 338 

using the K-S test. 339 

 On the x-axis is the number of replicates.  For every replicate number, we generated 340 

50,000 bootstrap samples using the original 21 replicate tests for the BDS and 50,000 bootstrap 341 

samples using the original 20 TSF replicate tests.  For each pair of samples, we compute the 342 

probability (p value) that they come from the same distribution.  We then compute the ratio, or 343 

probability, of the number of pairs that come from the same distribution divided by 50,000 with a 344 

confidence of 95%.  The y-axis shows the resulting probability.  When the number of replicates 345 

is greater than 6, the probability that the BDS and the TSF time to boil data are from two 346 

different distributions is greater than 95%.  For the PM2.5 emission factor data, 30 replicates are 347 

required to ensure that at least 95% chance the BDS and the TSF samples are drawn from two 348 

different distributions. 349 

5.4 A practical approach to assess the number of replicate tests 350 
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The difficulty with estimating the number of replicate tests needed for one particular stove is the 351 

lack of prior knowledge about the expected σ of the planned experiments.  We knew the σ for the 352 

above demonstration because we had already conducted 21 replicates. 353 

In the absence of the σ, the experiment designer must speculate on the variance.  We 354 

recommend reviewing the literature of similar stoves to pose a notional variance.  In the absence 355 

of such data, then the designer must use any other information as a starting point, such as the 356 

variance computed from the TSF and BDS replicates reported here.  Note the σ values for BDS 357 

and TSF for time-to-boil are 2.1 minutes and 5.6 minutes, respectively, and for emission factor 358 

for PM2.5 they are 1.2 g/kg-wood and 1.0 g/kg-wood, respectively.  The σ values calculated for 359 

all measured variables are summarized in Table 3.  360 

Note the wide difference in the three-stone-fire and the Berkeley-Darfur Stove.  The 361 

former is a set up with three stones with irregular shape, and the dimensions and shape and 362 

spacing of the stones can vary from test to test.  Results reported in the literature have generally 363 

been with consistent dimensions, shape, and spacing of the stones (or bricks).  This factor may 364 

have caused more variation in our TSF results compared to literature values.  In contrast, the 365 

BDS is precisely engineered metal stove of fixed dimensions.  The remarkable point is that while 366 

there is a difference in the σ values for the time to boil, there is not a large difference in the σ 367 

values for emission factors of the TSF and BDS despite the significant design difference.  So, we 368 

recommend starting conservatively, with the notional σ similar to the value for the TSF.  If the 369 

designer’s stove or testing conditions are likely to show less variation, then perhaps start with a 370 

notional variance that is 10% less.  Conversely, our BDS experiment was conducted in a 371 

controlled laboratory setting.  If the designer expects greater variation in the experiment (say, 372 

owing to variable field conditions), then begin with a notional variance of 10, 50, or even 100 373 
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percent greater.  For example, when testing fan-assisted stoves, which burn engineered wood 374 

pellets, we might start with a notional variance that is 10% smaller than was found here owing to 375 

the uniform nature of the engineered fuel pellets.  On the other hand, when testing an open fire 376 

(the fire is open completely to the ambient environment), we might begin with a notional 377 

variance that is twice that of the TSF (three stones or bricks are places between the fire and the 378 

ambient to provide the support to the cooking pot and some insulation of the fire) laboratory tests 379 

reported here. 380 

With a notional variance, the designer would proceed with equation (3) to compute the 381 

number of replicates needed based on the desired size of confidence interval (E) and the level of 382 

confidence desired (α).  Remember also that test conditions change, instruments malfunction, 383 

and interpretation of tests differ (such as the precise time of onset of hard boil, or the precise 384 

duration that water simmer, can be questionable).  These factors should also be considered 385 

beyond what is computed from the above statistics to arrive at the number of replicate tests.  386 

More replicate tests should be planned than required by the statistical estimation to compensate 387 

for these unusual occurrences.  This also increases the margin of safety in case the variability in 388 

the underlying distribution, represented by the standard deviation (σ) in equation (2), is larger 389 

than anticipated.  A conservative margin of 100% is recommended based on our abundant stove 390 

laboratory testing experience. 391 

With the number of replicate tests determined, the experimenters conduct the tests.  With 392 

these data now in hand, the experimenters can calculate the actual, observed variance computed 393 

from the experiment.  This value should be used to estimate the analysis results.  One might need 394 

to conduct additional replicate tests to achieve the desired confidence interval and desired level 395 

of confidence in the mean estimation from the test results. 396 
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  397 

6. Conclusions 398 

Our results show moderate inherent variability (coefficient of variation up to 0.4) among the TSF 399 

and BDS time to boil and PM2.5 emission measurements based on the modified WBT protocol.  400 

We demonstrate using these data as examples that some stove laboratory testing results could be 401 

misleading if only a small number of replicate tests were conducted.   However, there are costs 402 

associated with increasing the number of replicates.  The average value of any measured 403 

parameter should be always reported together with the number of replicates conducted and the 404 

uncertainty (e.g. standard deviation or confidence interval).  Cautions must be exercised in the 405 

interpretation of results based on only a few replicates.  We then describe a practical approach to 406 

calculate the number of replicate tests needed to obtain useful data from previously untested 407 

stoves.    408 

 The implications of these results include the following: (1) In the stove design and 409 

laboratory testing phase, researchers need to conduct a relatively large number of replicate tests 410 

to ensure with some confidence that the improvements of stove performance and emission levels 411 

are truly achieved.  (2) In the stove field testing phase, even more tests are required because of 412 

the less controlled testing environment and the associated larger inherent variability within the 413 

replicates.  (3) In the stove dissemination and adoption phase, decision makers and policy 414 

analysts should take into consideration the variability and confidence intervals of the laboratory 415 

and field testing results prior to any decisions.   416 
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Table 1. Summary of Z values. 530 

1 – α = 0.99 1 – α = 0.95 1 – α = 0.90 

z = 2.56 z = 1.96 z = 1.64 

  531 
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Table 2. Student’s t-distribution critical values. 532 

n  n – 1  t.995 (One sided) or t.975 (One sided) or t.95 (One sided) or 

(Number of 

replicates) 

(Degrees of 

Freedom) 
t.99 (Two sided) t.95 (Two sided) t.90 (Two sided) 

1 - - - - 

2 1 63.657 12.706 6.314 

3 2 9.925 4.303 2.920 

4 3 5.841 3.182 2.353 

5 4 4.604 2.776 2.132 

6 5 4.032 2.571 2.015 

7 6 3.707 2.447 1.943 

8 7 3.500 2.365 1.895 

9 8 3.355 2.306 1.860 

10 9 3.250 2.262 1.833 

11 10 3.169 2.228 1.812 

12 11 3.106 2.201 1.796 

13 12 3.054 2.179 1.782 

14 13 3.012 2.160 1.771 

15 14 2.977 2.145 1.761 

16 15 2.947 2.132 1.753 

17 16 2.921 2.120 1.746 

18 17 2.898 2.110 1.740 

19 18 2.878 2.101 1.734 

20 19 2.861 2.093 1.729 

21 20 2.845 2.086 1.725 

22 21 2.831 2.080 1.721 

23 22 2.819 2.074 1.717 

24 23 2.807 2.069 1.714 

25 24 2.797 2.064 1.711 

26 25 2.787 2.060 1.708 

27 26 2.779 2.056 1.706 

28 27 2.771 2.052 1.703 

29 28 2.763 2.048 1.701 

30 29 2.756 2.045 1.699 

 533 
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Table 3. Summary of the standard deviation values (σ) of all measured variables for the BDS 535 

(n=21) and the TSF (n=20).  536 

 TSF BDS 

Time to boil (minute) 5.6 2.1 

Dry wood burned (g) 75.4 33.6 

CO emission factor (g/kg-wood) 6.8 5.8 

PM2.5 emission factor (g/kg-wood) 1.0 1.2 

BC emission factor (g/kg-wood) 0.3 0.5 

  537 
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 538 

 539 

Figure 1. Schematic of the Berkeley-Darfur Stove. (1) A tapered wind collar that increases fuel-540 

efficiency in the windy Darfur environment and allows for multiple pot sizes; (2) Wooden 541 

handles for easy handling; (3) Metal tabs for accommodating flat plates for bread baking; (4) 542 

Internal ridges for optimal spacing between the stove and a pot for maximum fuel efficiency; (5) 543 

Feet for stability with optional stakes for additional stability; (6) Nonaligned air openings 544 

between the outer stove and inner fire box to accommodate windy conditions; and (7) Small fire 545 

box opening to prevent using more fuel wood than necessary.  546 



 

29 
 

 547 

 548 

Figure 2. Histogram of time to boil data for the BDS and the TSF.   549 
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 550 

 551 

Figure 3. Histogram of PM2.5 emission factor data for the BDS and the TSF.  552 
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 553 

 554 

Figure 4. Cumulative distribution function (CDF) of time to boil data for the BDS and the TSF.  555 
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 556 

 557 

Figure 5. Cumulative distribution function (CDF) of PM2.5 emission factor data for the BDS and 558 

the TSF.  559 
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 560 

 561 

Figure 6. The width of the confidence interval about the mean as a function of the number of 562 

replicate tests at three probability levels (0.1, 0.05, and 0.01) for the BDS time to boil and PM2.5 563 

emission factor data. For example, if the width of the confidence interval for the mean time to 564 

boil is 4 minutes at probability levels of 0.1, 0.05, and 0.01, 5, 7 and 12 replicates are required, 565 

respectively, as indicated by the black horizontal dash line and the black vertical arrows.  566 
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 567 

 568 

Figure 7. Kolmogorov-Smirnov test result showing the probability of the BDS and the TSF 569 

bootstrap samples are drawn from two different distributions as a function of the number of 570 

replicate tests for the time to boil and PM2.5 emission factor data.   571 


