Understanding the Reduction of Particulate Emissions in Biomass Cookstoves

Kathleen Lask^{1,2}, Cristian Birzer³, Paul Medwell³, Ashok Gadgil^{1,2} ¹University of California, Berkeley, ²Lawrence Berkeley National Lab, ³University of Adelaide, Australia

3 billion people worldwide cook with biomass¹

Inhalation of cooking smoke causes 4 million premature deaths per year²

Ultrafine particulates are especially detrimental to human health³

Efficient, low emission stoves are needed

Secondary air flow modifications can drastically reduce mass of particulates released from cookstoves⁵

Mechanisms behind these reductions are not well understood

Research Purpose

Study potential air flow modifications to identify mechanisms affecting particulate reduction, focusing on ultrafine particulates

Experimental Setup

THE UNIVERSITY

ofADELAIDE

1 Hz sampling of black carbon, CO, CO_2 , fuel consumption, and particulate matter

Improved woodburning cookstove

Used as baseline

Designed for Darfur

Fuel efficient with good heat transfer to cooking pot⁵

Berkeley-Darfur Stove⁴

(5 nm - 20 µm)

4 air flow rates, spanning feasible range for air injection in the field

Straight Halo modification:

- -- Copper ring manifold sits 50 mm above combustion chamber
- -- Injects air inward and downward at 45° angle toward the flames

Swirl Halo modification:

- -- Same as Straight Halo, but air holes are also angled horizontally at 30°
- -- Angled holes force injected air to swirl in combustion chamber

Above: Halo in Berkeley-Darfur Stove

Above left: Underside of Swirl Halo

Conclusions

- Both designs reduce black carbon and PM 2.5 •
- Straight Halo loses efficiency at higher flow rates
- Ultrafine particle size distribution concentrates and number density greatly increases as air flow rate increases
- Fine particles are greatly reduced as air flow rate increases

Future Work

Laser diagnostic techniques will be used to evaluate the effects of the air flow modifications

- Techniques will include PIV, LII, and OH-LIF
- Goal: Provide a better understanding of mechanisms behind particulate emissions and reductions
- Specifically, compare different air flow modifications to identify

From the preliminary tests, 1 cfm Swirl Halo appears to be the best option of

these designs and flow rates although it has an increased number of ultrafine

particulates.

mechanisms increasing or reducing ultrafine particulates

[1] Smith, et al. (2004) WHO [2] Lim, et al. (2012) Lancet [3] Terzano, et al. (2010) Eur Rev Med Pharmacol Sci [4] Courtesy of Potential Energy [5] Jetter, et al. (2012) ES&T

CONTACT: Kathleen Lask (kmlask@lbl.gov) http://gadgillab.berkeley.edu/